πŸ’‘ Activity Solution

πŸ’‘ Activity Solution


1️⃣ Binary conversions:


✨ Convert 44 β†’ Binary

Divide 44 by 2:

44 Γ· 2 = 22, remainder 0
22 Γ· 2 = 11, remainder 0
11 Γ· 2 = 5, remainder 1
5 Γ· 2 = 2, remainder 1
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:


1 0 1 1 0 0

Pad to 8 bits: 00101100

βœ… 44 (decimal) = 00101100 (binary)



✨ Convert 129 β†’ Binary

Divide 129 by 2:

129 Γ· 2 = 64, remainder 1
64 Γ· 2 = 32, remainder 0
32 Γ· 2 = 16, remainder 0
16 Γ· 2 = 8, remainder 0
8 Γ· 2 = 4, remainder 0
4 Γ· 2 = 2, remainder 0
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:


1 0 0 0 0 0 0 1

βœ… 129 (decimal) = 10000001 (binary)



✨ Convert 512 β†’ Binary

Divide 512 by 2:

512 Γ· 2 = 256, remainder 0
256 Γ· 2 = 128, remainder 0
128 Γ· 2 = 64, remainder 0
64 Γ· 2 = 32, remainder 0
32 Γ· 2 = 16, remainder 0
16 Γ· 2 = 8, remainder 0
8 Γ· 2 = 4, remainder 0
4 Γ· 2 = 2, remainder 0
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:


1 0 0 0 0 0 0 0 0 0

βœ… 512 (decimal) = 1000000000 (binary)



✨ Convert 717 β†’ Binary

Divide 717 by 2:

717 Γ· 2 = 358, remainder 1
358 Γ· 2 = 179, remainder 0
179 Γ· 2 = 89, remainder 1
89 Γ· 2 = 44, remainder 1
44 Γ· 2 = 22, remainder 0
22 Γ· 2 = 11, remainder 0
11 Γ· 2 = 5, remainder 1
5 Γ· 2 = 2, remainder 1
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:


1 0 1 1 0 0 1 1 0 1


βœ… 717 (decimal) = 1011001101 (binary)



✨ Convert 999 β†’ Binary

Divide 999 by 2:

999 Γ· 2 = 499, remainder 1
499 Γ· 2 = 249, remainder 1
249 Γ· 2 = 124, remainder 1
124 Γ· 2 = 62, remainder 0
62 Γ· 2 = 31, remainder 0
31 Γ· 2 = 15, remainder 1
15 Γ· 2 = 7, remainder 1
7 Γ· 2 = 3, remainder 1
3 Γ· 2 = 1, remainder 1
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:


1 1 1 1 0 0 1 1 1

βœ… 999 (decimal) = 1111100111 (binary)



2️⃣ Example (Name: β€œOmar”):

πŸ’‘ Example (Name: β€œOmar”) to Binary:


πŸ”€ Step 1 β€” Get the ASCII Codes

πŸ”€ Step 2: Now we convert each decimal value to binary using repeated division:



✨ Convert "O" (79) to Binary

Divide 79 by 2:


79 Γ· 2 = 39, remainder 1
39 Γ· 2 = 19, remainder 1
19 Γ· 2 = 9, remainder 1
9 Γ· 2 = 4, remainder 1
4 Γ· 2 = 2, remainder 0
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:

1 0 0 1 1 1 1

Pad to 8 bits: 01001111

βœ… O = 01001111



✨ Convert "m" (109) to Binary

Divide 109 by 2:

109 Γ· 2 = 54, remainder 1
54 Γ· 2 = 27, remainder 0
27 Γ· 2 = 13, remainder 1
13 Γ· 2 = 6, remainder 1
6 Γ· 2 = 3, remainder 0
3 Γ· 2 = 1, remainder 1
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:


1 1 0 1 1 0 1

Pad to 8 bits: 01101101

βœ… m = 01101101


✨ Convert "a" (97) to Binary

Divide 79 by 2:

97 Γ· 2 = 48, remainder 1
48 Γ· 2 = 24, remainder 0
24 Γ· 2 = 12, remainder 0
12 Γ· 2 = 6, remainder 0
6 Γ· 2 = 3, remainder 0
3 Γ· 2 = 1, remainder 1
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:


1 1 0 0 0 0 1

Pad to 8 bits: 01100001

βœ… a = 01100001



✨ Convert "r" (114) to Binary

Divide 114 by 2:

114 Γ· 2 = 57, remainder 0
57 Γ· 2 = 28, remainder 1
28 Γ· 2 = 14, remainder 0
14 Γ· 2 = 7, remainder 0
7 Γ· 2 = 3, remainder 1
3 Γ· 2 = 1, remainder 1
1 Γ· 2 = 0, remainder 1

Now read remainders bottom β†’ top:


1 1 1 0 0 1 0

Pad to 8 bits: 01110010

βœ… r = 01110010



🎯 Final Result β€” β€œOmar” in Binary

       O                  m                   a                  r
01001111  01101101   01100001   01110010


βœ… β€œOmar” = 01001111 01101101 01100001 01110010


Complete and Continue  
Discussion

27 comments