π‘ Activity Solution
π‘ Activity Solution
1οΈβ£ Binary conversions:
β¨ Convert 44 β Binary
Divide 44 by 2:
44 Γ· 2 = 22, remainder 0
22 Γ· 2 = 11, remainder 0
11 Γ· 2 = 5, remainder 1
5 Γ· 2 = 2, remainder 1
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 0 1 1 0 0
Pad to 8 bits: 00101100
β
44 (decimal) = 00101100 (binary)
β¨ Convert 129 β Binary
Divide 129 by 2:
129 Γ· 2 = 64, remainder 1
64 Γ· 2 = 32, remainder 0
32 Γ· 2 = 16, remainder 0
16 Γ· 2 = 8, remainder 0
8 Γ· 2 = 4, remainder 0
4 Γ· 2 = 2, remainder 0
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 0 0 0 0 0 0 1
β 129 (decimal) = 10000001 (binary)
β¨ Convert 512 β Binary
Divide 512 by 2:
512 Γ· 2 = 256, remainder 0
256 Γ· 2 = 128, remainder 0
128 Γ· 2 = 64, remainder 0
64 Γ· 2 = 32, remainder 0
32 Γ· 2 = 16, remainder 0
16 Γ· 2 = 8, remainder 0
8 Γ· 2 = 4, remainder 0
4 Γ· 2 = 2, remainder 0
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 0 0 0 0 0 0 0 0 0
β 512 (decimal) = 1000000000 (binary)
β¨ Convert 717 β Binary
Divide 717 by 2:
717 Γ· 2 = 358, remainder 1
358 Γ· 2 = 179, remainder 0
179 Γ· 2 = 89, remainder 1
89 Γ· 2 = 44, remainder 1
44 Γ· 2 = 22, remainder 0
22 Γ· 2 = 11, remainder 0
11 Γ· 2 = 5, remainder 1
5 Γ· 2 = 2, remainder 1
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 0 1 1 0 0 1 1 0 1
β
717 (decimal) = 1011001101 (binary)
β¨ Convert 999 β Binary
Divide 999 by 2:
999 Γ· 2 = 499, remainder 1
499 Γ· 2 = 249, remainder 1
249 Γ· 2 = 124, remainder 1
124 Γ· 2 = 62, remainder 0
62 Γ· 2 = 31, remainder 0
31 Γ· 2 = 15, remainder 1
15 Γ· 2 = 7, remainder 1
7 Γ· 2 = 3, remainder 1
3 Γ· 2 = 1, remainder 1
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 1 1 1 0 0 1 1 1
β 999 (decimal) = 1111100111 (binary)
2οΈβ£ Example (Name: βOmarβ):
π‘ Example (Name: βOmarβ) to Binary:
π€ Step 1 β Get the ASCII Codes
π€ Step 2: Now we convert each decimal value to binary using repeated division:
β¨ Convert "O" (79) to Binary
Divide 79 by 2:
79 Γ· 2 = 39, remainder 1
39 Γ· 2 = 19, remainder 1
19 Γ· 2 = 9, remainder 1
9 Γ· 2 = 4, remainder 1
4 Γ· 2 = 2, remainder 0
2 Γ· 2 = 1, remainder 0
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 0 0 1 1 1 1
Pad to 8 bits: 01001111
β
O = 01001111
β¨ Convert "m" (109) to Binary
Divide 109 by 2:
109 Γ· 2 = 54, remainder 1
54 Γ· 2 = 27, remainder 0
27 Γ· 2 = 13, remainder 1
13 Γ· 2 = 6, remainder 1
6 Γ· 2 = 3, remainder 0
3 Γ· 2 = 1, remainder 1
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 1 0 1 1 0 1
Pad to 8 bits: 01101101
β
m = 01101101
β¨ Convert "a" (97) to Binary
Divide 79 by 2:
97 Γ· 2 = 48, remainder 1
48 Γ· 2 = 24, remainder 0
24 Γ· 2 = 12, remainder 0
12 Γ· 2 = 6, remainder 0
6 Γ· 2 = 3, remainder 0
3 Γ· 2 = 1, remainder 1
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 1 0 0 0 0 1
Pad to 8 bits: 01100001
β a = 01100001
β¨ Convert "r" (114) to Binary
Divide 114 by 2:
114 Γ· 2 = 57, remainder 0
57 Γ· 2 = 28, remainder 1
28 Γ· 2 = 14, remainder 0
14 Γ· 2 = 7, remainder 0
7 Γ· 2 = 3, remainder 1
3 Γ· 2 = 1, remainder 1
1 Γ· 2 = 0, remainder 1
Now read remainders bottom β top:
1 1 1 0 0 1 0
Pad to 8 bits: 01110010
β r = 01110010
π― Final Result β βOmarβ in Binary
O m a r 01001111 01101101 01100001 01110010
β βOmarβ = 01001111 01101101 01100001 01110010

27 comments