Hexadecimal System In Computer
What Is the Hexadecimal System (Base-16)?
Computers speak binary (base-2), but long strings of 0/1 are hard for humans to read. Hexadecimal (base-16) gives a compact, human-friendly way to view the same bits: every 4 binary bits (a nibble) map to one hex digit. One byte (8 bits) maps neatly to 2 hex digits β perfect for memory dumps, colors, Unicode, and machine code.
πΉ 1οΈβ£ Decimal vs Binary vs Hexadecimal
- Decimal (base-10): digits 0β9
- Binary (base-2): digits 0β1
- Hexadecimal (base-16): digits 0β9 + A, B, C, D, E, F (A=10 β¦ F=15)
Key 4-bit mapping:
ο»ΏπΉ 2οΈβ£ Why Hexadecimal?
- Humans struggle with long binary strings (e.g., βI Love You!β in ASCII bits).
- Hex compresses binary:
11010100β D41111 1111 1111 1111 1111β FFFFFF (grouped by 4 bits)
- Each byte = 2 hex digits β clean, readable dumps and color codes.
πΉ 3οΈβ£ Hex Prefixes in Real Tech
πΉ 4οΈβ£ How Hexadecimal - Base-16 Works?
- Base-2 Binary doubles: 1, 2, 4, 8, 16, 32, 64, 128 β¦
- Base-16 Hexa powers:
Hex digits multiply these powers by 0β15.
πΉ 5οΈβ£ Convert Decimal β Hex (division by 16 with remainders)
β Example 1: 469 β Hex
- 469 Γ· 16 = 29, remainder 5 β least-significant hex = 5
- 29 Γ· 16 = 1, remainder 13 β D
- 1 Γ· 16 = 0, remainder 1 β 1
Read remainders bottomβtop: 1D5.
β Example 2: 1513 β Hex
ο»Ώ
- 1513 Γ· 16 = 94, rem 9
- 94 Γ· 16 = 5, rem 14 β E
- 5 Γ· 16 = 0, rem 5
Result: Read remainders bottomβtop: 5E9.
β Example 3: 479 β Hex
- 479 Γ· 16 = 29, rem 15 β F
- 29 Γ· 16 = 1, rem 13 β D
- 1 Γ· 16 = 0, rem 1
Result: Read remainders bottomβtop: 1DF.
πΉ 6οΈβ£ Convert Hex β Decimal (expand with powers of 16)
β Example: 1D5ββ β ?
β Example: 5E9ββ β ?
β Example: 1DFββ β ?
πΉ 7οΈβ£ Convert Hex β Binary (fastest method)
- Hex β Binary: replace each hex digit by its 4-bit binary:
D4βD=1101,4=0100β1101 0100.
- Binary β Hex: group bits in 4s from the right and map each group to one hex digit.
β Example: 1D5ββ β Binary?
πΉ 8οΈβ£ Convert Binary β Hex (fastest method)
π Interconnection
πΉ 4 bits β 1 hex digit β compact human view of binary.
πΉ 1 byte β 2 hex digits β easy memory/ASCII/color dumps.
πΉ Powers of 16 (1,16,256,4096β¦) β drive decimalβhex math.
πΉ Prefixes (#, 0x, &#, U+) β tell tools to interpret as hex.
By mastering hex, you read/write low-level data confidently β firmware, encodings, colors, addresses β without drowning in 0/1. π






















19 comments